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Computationally Enhanced Mobility

I Developing high-fidelity simulation tools to estimate the energy
impact of Connected and Automated Vehicles.

I Developing algorithms for optimally routing vehicles with
platooning capabilities.

POLARIS
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https://www.youtube.com/watch?v=R96HgRu2D4g&feature=youtu.be&list=UUagamBvaFXzrOUv_Ox-mLig&t=228


Computationally Enhanced Mobility

I Developing high-fidelity simulation tools to estimate the energy
impact of Connected and Automated Vehicles.

I Developing algorithms for optimally routing vehicles with
platooning capabilities.

POLARIS

3 of 16.

https://www.youtube.com/watch?v=R96HgRu2D4g&feature=youtu.be&list=UUagamBvaFXzrOUv_Ox-mLig&t=228


Workflow

Optimization
Model

Vehicles Network

POLARIS

Autonomie

4 of 16.



Workflow

Optimization
Model

Vehicles Network

POLARIS

Autonomie

4 of 16.



Workflow

Optimization
Model

Vehicles Network

POLARIS

Autonomie

4 of 16.



Workflow

Optimization
Model

Vehicles Network

POLARIS

Autonomie

4 of 16.



Networks

5 of 16.



Animation

Grid

Chicago
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 http://www.mcs.anl.gov/~jlarson/Platooning/grid_platooning.mp4 
 http://www.mcs.anl.gov/~jlarson/Platooning/chicago.mp4 


Optimization Model - Model Parameters

Set Meaning
V Vehicles to route
I Network nodes

E ⊆ I × I Network edges

Parameter Meaning
Ov v ∈ V origin node
Dv v ∈ V destination node
TO

v v ∈ V origin time
TD

v v ∈ V destination time
CW

v waiting cost for v ∈ V
Ci ,j cost for taking (i , j) ∈ E
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Optimization Model - Model Variables

Variable Meaning
fv ,i ,j 1 if v travels on (i , j)

qv ,w ,i ,j 1 if v follows w on (i , j)
ev ,i ,j Time v enters (i , j)
wv ,i Time v waits at i

8 of 16.



Optimization Model - Model Constraints

Node outflows must equal inflows.

When platooning, enter times are equal.

Platooning requires at least two vehicles.

Only one vehicle can follow.

TO
v plus waiting time is the origin enter time.

TD
v is the final enter time plus the time required to travel the final

edge plus waiting at the end.

Intermediate enter times are equal plus the travel and waiting
times.

Can’t have nonzero enter time if there is no flow.

Can’t have nonzero wait time if there is no flow.

Platoon requires flow for the leader.

Platoon requires flow for the followers.

9 of 16.



Optimization Model - Example Constraints

Can’t have nonzero enter time if there is no flow.

ev ,i ,j ≤ Mfv ,i ,j ; ∀v ∈ V , (i , j) ∈ E

Enter times are equal when platooning.

−M(1− qv ,w ,i ,j ) ≤ ev ,i ,j − ew ,i ,j ≤ M(1− qv ,w ,i ,j)

Objective:

minimize
∑
v ,i ,j

Ci ,j

(
fv ,i ,j − η

∑
w

qv ,w ,i ,j

)
+
∑
v ,i

CW
v wv ,i
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Helping the MIP solver

Consider v and w platooning on edge (i , j) only if

max
{
TO

v + MOv ,i ,T
O
w + MOw ,i

}
+ Ti ,j ≤ min

{
TD

v −MDv ,j ,T
D
w −MDw ,j

}
where Ma,b is the minimum time required to reach b from a.

Lemma
If vehicles use a fraction η less fuel when trailing in a platooning and ts
is the shortest time for a vehicle to travel from its origin to destination,
it will never travel a path longer than 1

1−η ts .

Lemma
There exists an optimal platoon routing in which no two vehicles split
and then merge together.
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Problem Setup

I Vehicles all travel at free-flow speeds

I 10% savings for platooning

I 25 vehicles

I Grid: random origin/destination pairs
I Chicago: origin/destination pairs drawn from the most common

morning commutes

I Start times drawn uniformly from [0,100]

I Destination times

T v
D = T v

O + MOv ,Dv + p,

for some time p ≥ 0

I No cost for waiting

I 10 replications

I Running Gurobi until its optimality gap is less than 1e-8
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Example solution times
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Lemma

max
{
TO

v ,T
O
w

}
+ MOv ,Dv ≤ min

{
TD

v ,T
O
w

}
. (1)

Lemma
Let v ,w ∈ V satisfying Ov = Ow , Dv = Dw , and (1). Then if an
optimal solution has qv ,w ,i ,j = 0 for any edge (i , j) ∈ E , there exists an
optimal solution with qv ,w ′,i ,j = 0 for all (i , j) all w ′ arriving later than w .

14 of 16.



Current work

I Non-free-flow speeds

I Graph-reduction techniques

I Larger problems

I http://www.mcs.anl.gov/~jlarson/Platooning/

15 of 16.
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